منابع مشابه
Linking and Cutting Spanning Trees
We consider the problem of uniformly generating a spanning tree, of a connected undirected graph. This process is useful to compute statistics, namely for phylogenetic trees. We describe a Markov chain for producing these trees. For cycle graphs we prove that this approach significantly outperforms existing algorithms. For general graphs we obtain no analytical bounds, but experimental results ...
متن کاملNon-crossing trees revisited: cutting down and spanning subtrees
Here we consider two parameters for random non-crossing trees: i the number of random cuts to destroy a sizen non-crossing tree and ii the spanning subtree-size of p randomly chosen nodes in a size-n non-crossing tree. For both quantities, we are able to characterise for n ∞ the limiting distributions. Non-crossing trees are almost conditioned Galton-Watson trees, and it has been already shown,...
متن کاملNetworks and Spanning Trees
In 1857 Arthur Cayley (1821–1895) published a paper [9] that introduces the term “tree” to describe the logical branching that occurs when iterating the fundamental process of (partial) differentiation. When discussing the composition of four symbols that involve derivatives, Cayley writes “But without a more convenient notation, it would be difficult to find [their] corresponding expressions ....
متن کاملSpanning Trees and Spanners
We survey results in geometric network design theory, including algorithms for constructing minimum spanning trees and low-dilation graphs.
متن کاملSpanning Trees in 2-trees
A spanning tree of a graph G is a connected acyclic spanning subgraph of G. We consider enumeration of spanning trees when G is a 2-tree, meaning that G is obtained from one edge by iteratively adding a vertex whose neighborhood consists of two adjacent vertices. We use this construction order both to inductively list the spanning trees without repetition and to give bounds on the number of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algorithms
سال: 2018
ISSN: 1999-4893
DOI: 10.3390/a11040053